
Eur. Phys. J. B 20, 349–366 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The paper discusses the reconstruction of potentials for quantum systems at finite temperatures
from observational data. A nonparametric approach is developed, based on the framework of Bayesian
statistics, to solve such inverse problems. Besides the specific model of quantum statistics giving the prob-
ability of observational data, a Bayesian approach is essentially based on a priori information available for
the potential. Different possibilities to implement a priori information are discussed in detail, including
hyperparameters, hyperfields, and non-Gaussian auxiliary fields. Special emphasis is put on the reconstruc-
tion of potentials with approximate periodicity. Such potentials might for example correspond to periodic
surfaces modified by point defects and observed by atomic force microscopy. The feasibility of the approach
is demonstrated for a numerical model.

PACS. 05.30.-d Quantum statistical mechanics – 02.50.Tt Inference methods

1 Introduction

A successful application of quantum mechanics to real
world systems relies essentially on an adequate recon-
struction of the underlying potential, describing the forces
governing the system. The reconstruction of potentials or
forces from available observational data defines an em-
pirical learning task. It also constitutes a typical exam-
ple of an inverse problem. Such problems are notori-
ously ill–defined in the sense of Tikhonov [1–4]. In that
case additional a priori information is required to yield a
unique and stable solution. A Bayesian framework is espe-
cially well suited to include both, observational data and
a priori information, in a quite flexible manner.

On the classical level, Bayesian methods are now in
widespread use, for example in medicine for X-ray com-
puter tomography [5] or positron emission tomography, in
geophysics to infer the Earth’s subsurface properties from
reflection seismic data [6,7], and for a variety of other
data analysis problems in astronomy, astrophysics [8] high
energy physics [9] or image reconstruction [10,11]. Algo-
rithms to solve inverse problems for quantum systems,
however, will become more important in the future, for
example in fast evolving areas like in atomic force mi-
croscopy when scales are reached where a quantum me-
chanical description becomes mandatory [12]. A similar
problem appears in quantum computing when reading off
the result of a calculation by measuring the final state of
a quantum computer [13,14].
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Inverse scattering theory [15–17] and inverse spectral
theory [18–21] are two classical research fields which deal
in particular with the reconstruction of potentials from
spectral data. Both theories describe the kind of data
which are necessary, in addition to a given spectrum, to
determine a potential uniquely. In inverse scattering the-
ory these additional data are for example phase shifts,
obtained far away from the scatterer. For the bound state
problems studied in inverse spectral theory these addi-
tional data may consist of a second spectrum obtained for
boundary conditions different from those for the first spec-
trum. The approach of Bayesian Inverse Quantum The-
ory (BIQT) we will refer to in the following is not exclu-
sively designed for spectral data but is able to work with
quite arbitrary observational data [22]. It can thus be eas-
ily adapted to a large variety of different reconstruction
scenarios [23–25].

The basics of a Bayesian framework are summarized
in Section 2. Setting up a Bayesian approach for a specific
application area requires the definition of two basic prob-
abilistic models. First, a likelihood model is needed giving,
for each possible potential, the probability of the obser-
vational data. The likelihood model of quantum statis-
tics is discussed in Section 3. Second, a prior model has
to be chosen to implement available a priori information.
Prior models which are useful for inverse quantum statis-
tics are presented in Section 4. Technically the most con-
venient prior models are Gaussian processes, presented in
Section 4.1. Section 4.2 shows how covariance and mean
of a Gaussian process can be related to a priori informa-
tion about approximate symmetries of the potentials to
be reconstructed. Section 4.3 concentrates on approximate
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periodicity, Section 4.4 on potentials with discontinuities.
Prior models are made more flexible by using hyperparam-
eters (Sect. 4.5), or more general hyperfields, being func-
tion hyperparameters (Sect. 4.6). Related non-Gaussian
priors are the topic of Section 4.7. Having defined lik-
lihood and prior models Section 5 discusses the equa-
tions to be solved for reconstructing a potential. Finally,
Section 6 presents numerical applications.

2 Bayesian approach

Empirical learning is based on observational data D.
In particular, we will distinguish “dependent” variables
x, representing measurement results, and “independent”
variables O, characterizing the kind of measurement
performed. In the context of inverse quantum theory the
latter denotes the observables which are measured. Such
observables may for example be the position, the momen-
tum, or the energy of a quantum particle. Variables x and
O are assumed to be measurable and represent therefore
visible variables. Observational data will be assumed to
consist of n pairs D = {(xi, Oi)|1 ≤ i ≤ n} = (xT , OT ),
where xT and OT denote the vectors with components xi
or Oi, respectively. Such data will also be called training
data. In empirical learning one tries to extract a “general
law” from observations. In this paper the quantum po-
tential V to be reconstructed will represent this “general
law”. (Similarly, in the Bayesian reconstruction of quan-
tum states the object to be reconstructed is the density
operator of an unknown state [26–29].) Potentials, consid-
ered not to be directly observable, represent in our con-
text the hidden or latent variables. We will now use the
Bayesian framework to relate unobservable potentials to
observational data.

The Bayesian approach is a general probabilistic
framework to deal with empirical learning problems
[8,30–36,23]. Predicting results of future measurements
on the basis of given training data is achieved by means
of the predictive probability p(x|O,D) (or predictive den-
sity for continuous x), which is the probability of finding
the value x when measuring observable O under the con-
dition that the training data D are given. To calculate
the predictive probability a probabilistic model is needed
which describes the measurement process. Such a model is
specified by giving the probability p(x|O, V ) of finding x
when measuring observable O for each possible potential
V . As p(x|O, V ), considered as function of V for fixed x
and O, is known as likelihood of V , we will call this the
likelihood model. For inverse quantum problems the likeli-
hood model is given by the axioms of quantum mechanics
and will be discussed in Section 3.

According to the rules of probability theory the pre-
dictive probability can now be written as an integral over
the space of all possible potentials V ,

p(x|O,D) =
∫

dV p(x|O, V ) p(V |D). (1)

We note that in equation (1) we have assumed that
the probability of x is completely determined by giving

potential and observable and does not depend on the
training data, p(x|O, V,D) = p(x|O, V ), and that the
probability of the potential given the training data does
not depend on the observables selected in the future,
p(V |O,D) = p(V |D). If the set of possible potentials is
a space of functions, the integral in (1) is a functional
integral.

As the likelihood model is assumed to be given, learn-
ing consists in the determination of p(V |D), known as the
posterior for V . To this end, we relate the posterior for V
to the likelihood of V under the training data by applying
Bayes’ theorem,

p(V |D) =
p(xT |OT , V ) p(V )

p(xT |OT )
, (2)

assuming p(V |OT ) = p(V ), analogous to equation (1). In
the numerator of equation (2) appears, besides the likeli-
hood, the so called prior p(V ). This prior gives the proba-
bility of V before training data have been collected. Hence
it has to comprise all a priori information available for
the potential. The need for a prior model, complement-
ing the likelihood model, is characteristic for a Bayesian
approach. The denominator in equation (2) plays the role
of a normalization factor and can be obtained from like-
lihood and prior by integration over V as p(xT |OT ) =∫

dV p(xT |OT , V ) p(V ).
From a Bayesian perspective learning appears as up-

dating the probability for V caused by the arrival of new
data D. If more data become available this process can be
iterated, the old posterior becoming the new prior which
is then updated yielding a new posterior.

In practice, a major difficulty is the calculation of the
integral over all possible V to get the predictive probabil-
ity (1). Even if one resorts to a discrete approximation for
x the integral (1) is typically still very high dimensional.
The key point is thus to find a feasible approximation for
that integral. Two approaches are common in Bayesian
statistics. The first one is an evaluation of the integral by
Monte Carlo methods [33,37–39]. The second one, which
we will pursue in the following, is the so called maximum
a posteriori approximation (MAP), being a variant of the
saddle point method [31,33,40–44]. In MAP one assumes
the posterior to be sufficiently peaked around the potential
V ∗ which maximizes the posterior, so that approximately

p(x|O,D) ≈ p(x|O, V ∗), (3)

with

V ∗ = argmaxV ∈Vp(V |D)
= argmaxV ∈Vp(xT |OT , V )p(V ). (4)

Maximizing the posterior with respect to V ∈ V means,
according to equation (2) with the denominator indepen-
dent of V , maximizing the product of likelihood and prior.

The Bayesian framework discussed so far can analo-
gously be applied to a variety of different contexts, includ-
ing regression, density estimation and classification prob-
lems [23]. The case of a Gaussian likelihood with fixed
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variance, for example, is known as regression problem,
while problems with general likelihoods are known as den-
sity estimation.

3 Likelihood model of quantum statistics

The first step in applying the Bayesian framework to in-
verse problems of quantum theory or quantum statistics
is the definition of the likelihood model [22]. This is easily
obtained from the axioms of quantum mechanics. Con-
sider a system prepared in a state described by a density
operator ρ. As our aim will be to reconstruct potentials
V from observational data, we have to choose a ρ which
depends on the potential. The probability to find value x,
when measuring an observable represented by the Hermi-
tian operator O, is given by

p(x|O, V ) = Tr
(
PO(x) ρ(V )

)
, (5)

where PO(x) =
∑
ζ |x, ζ〉〈x, ζ | denotes the projector on

the space of (orthonormalized) eigenfunctions |x, ζ〉 of O
with eigenvalue x and the variable ζ distinguishes eigen-
functions with degenerate eigenvalues.

In particular, for a canonical ensemble at temperature
1/β (setting Boltzmann’s constant equal to 1) the density
operator reads

ρ =
e−βH

Tr e−βH
· (6)

To be specific, we will study in the following Hamiltoni-
ans of the form H = T + V , with kinetic energy T =
−(1/2m)∆, (with Laplacian ∆, mass m, and setting ~ =
1) and a local potential

V (x, x′) = v(x)δ(x − x′), (7)

defined by the function v(x). Note that the formalism pre-
sented in the following works with nonlocal potentials as
well, numerical calculations, however, would in that case
be more demanding. For the likelihood models correspond-
ing to time-dependent quantum systems and to many-
body systems in Hartree-Fock approximation we refer to
[24,25].

In the following we will study observational data con-
sisting of n position measurements xi. This corresponds to
choosing the position operator for the observables Oi = x̂
with x̂|xi〉 = xi|xi〉. Hence, for a canonical ensemble, the
likelihood (5) becomes for a single position measurement

p(xi|x̂, v) =
∑
α

pα|φα(xi)|2 = 〈 |φ(xi)|2 〉 (8)

with (non-degenerate) eigenfunctions φα of H and ener-
gies Eα, i.e., H|φα〉 = Eα|φα〉. Angular brackets 〈 · · · 〉
denote a thermal expectation under the probabilities pα
= exp(−βEα)/Z with Z =

∑
α exp(−βEα) according to

equation (6). For independent data Di = (xi, Oi),

p(xT |OT , v) =
n∏
i=1

p(xi|x̂, v) =
n∏
i=1

〈 |φ(xi)|2 〉. (9)

A quantum mechanical measurement changes the state of
the system, i.e., it changes ρ. Hence, to obtain indepen-
dent data under constant ρ requires the density operator
to be restored before each measurement. For a canonical
ensemble this means to wait between two consecutive ob-
servations until the system is thermalized again.

Choosing a parametric family of potentials v(x; ξ) one
could now maximize the likelihood with respect to the
parameters ξ, and choose as reconstructed potential

v∗(x) = v(x; ξ∗) with ξ∗ = argmaxξ p(xT |OT , v(ξ)).
(10)

This is known as maximum likelihood approximation and
works well if the number of data is large compared to the
flexibility of the selected parametric family of potentials.
This method does however not yield a unique optimal po-
tential if the flexibility is too large for the available number
of observations. (A possible measure of the “flexibility” of
a parametric family is given by the Vapnik-Chervonenkis
dimension [3] or variants thereof.) In such cases, the in-
clusion of additional restrictions on v in form of a priori
information is essential. This holds especially for nonpara-
metric approaches, where each number v(x) is treated as
individual degree of freedom. Including a priori informa-
tion generalizes the maximum likelihood approximation of
equation (10) to the MAP of equation (4).

4 Prior models

4.1 Gaussian processes

A finite number of observational data cannot completely
determine a function v(x). Hence, besides observational
data, additional a priori information is necessary to re-
construct a potential in BIQT.

For example, assume a potential which represents the
surface of some crystal in a one–particle model. Ideally,
such a surface would show a periodic structure with a pe-
riod corresponding to interatomic distances. In practice,
however, such an ideal surface is expected to be distorted,
for example by point defects induced by impurities or by
discontinuities resulting from dislocations. Furthermore,
some information may be available on typical point de-
fects or discontinuities, like their typical forms, or their
typical numbers or distances. In such cases, our aim is to
construct priors which are as specific, or “informative”,
as possible. In this sense our approach contrasts with the
widespread use of “noninformative priors”, typically based
on the Fisher information metric, which have been devel-
oped for situations where no specific a priori knowledge
is available [31,45,46]. (For non-informative priors and
metrics on the space of density matrices, see for exam-
ple [47–49]). In the following we discuss different ways to
implement specific a priori information. While in this pa-
per we are interested in applications to inverse quantum
theory we remark that the same techniques to implement
a priori information can also be used for nonparametric
density estimation or nonparametric regression [23].
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A parametric approach restricts the potential to some
parametric family and requires to implement the prior in
terms of the corresponding parameters. Those are often
very difficult to relate to available a priori knowledge for-
mulated in terms of the potential. Choosing a nonpara-
metric approach, however, the space of possible potentials
is not needlessly restricted and it is possible to formulate
a priori information directly in terms of the function v(x)
itself.

As example of a nonparametric prior, let us consider
the convenient choice of a Gaussian process

p(v) =
(

det
K0

2π

) 1
2

e−
1
2 〈v−v0 |K0 | v−v0〉, (11)

where

〈v − v0 |K0 | v − v0〉 = (12)∫
dxdx′ [v(x)− v0(x)]K0(x, x′)[v(x′)− v0(x′)].

The function v0 is the mean or regression function, rep-
resenting a reference potential or template for v. In MAP
this reference potential represents our choice of a recon-
structed potential in the absence of observational data.
The inverse covariance K0 is a real symmetric, positive
(semi)definite operator which acts on potentials rather
than on wave functions and defines a distance measure on
the space of potentials. That means, the inverse covariance
defines the probabilities we assign to the deviations from
the reference potential v0 in the various directions in the
space of potentials. For technical convenience one may in-
troduce explicitly a factor λ multiplying K0 to balance the
influence of the prior against the likelihood term. A Gaus-
sian prior as in equation (11) is already a quite flexible
tool for implementing a priori knowledge. A bias towards
smooth functions v(x), for instance, can be implemented
by choosing the negative Laplacian as inverse covariance
K0 = −∆. Including higher derivatives in K0 would re-
sult in even smoother potentials, in the sense that higher
derivatives of v(x) become continuous. For example, a
common smoothness prior used for regression problems is
the radial basis function prior K0 = exp (−σ2

RBF∆/2) [42].

4.2 Covariances and approximate symmetries

While exact symmetries provide important concepts in
physics to construct Lagrangian densities of field theo-
ries, typical a priori information in empirical learning is
related to approximate symmetries. In the case of inverse
quantum theory this means that potentials v can often
be expected to show approximate invariance under spe-
cific transformations [23]. Typical examples of such trans-
formations are symmetry operations like translations or
rotations.

To be specific, assume that a (not necessarily local) po-
tential V commutes approximately, but not exactly, with
some unitary operator S,

V ≈ S†V S = SV, (13)

which defines an operator S acting on V . Then the Gaus-
sian process prior p(V ) ∝ exp{−ES(V )} with prior energy

ES =
1
2
〈V − SV |V − SV 〉 =

1
2
〈V |K0 |V 〉, (14)

and inverse covariance operator

K0 = (I− S)T (I− S), (15)

I denoting the identity operator, is a possible implemen-
tation of the a priori knowledge of an approximate sym-
metry of V under S.

More general, one can consider symmetry operations
S(θ), with corresponding S(θ), depending on a parameter
(vector) θ. Approximate invariance under S(θi) for several
θi is then implemented by using the sum (or integral, for
continuous variables)

ES =
1
2

∑
i

〈V − S(θi)V |V − S(θi)V 〉

=
1
2

∑
i

〈V |K0(θi) |V 〉. (16)

Alternatively, one may require approximate symmetry for
only one value of θ, not fixed a priori. For example, one
may expect an approximately periodic potential with un-
known periodicity length θ which also has to be deter-
mined from the data. Such hyperparameters θ will be dis-
cussed in Section 4.5.

Lie groups are continuously parameterized transforma-
tions

S(θ) = e
P
i θisi , (17)

where θi are the real parameters and the si = −sTi (the
superscript T denoting the transpose) are antisymmetric
operators representing the generators of the infinitesimal
transformations of the Lie-group. We can define a prior
energy as an error measure with respect to an infinitesimal
transformation,

ES =
1
2

∑
i

〈V − (1 + θisi)V
θi

∣∣∣ V − (1 + θisi)V
θi

〉
=

1
2
〈V |

∑
i

sTi si |V 〉. (18)

For instance, a Laplacian smoothness prior for a local
potential v(x) can be related to an approximate sym-
metry under infinitesimal translations. For the group of
d-dimensional translations which is generated by the gra-
dient operator ∇ this can be verified by recalling the mul-
tidimensional Taylor formula for expanding v around x

S(θ)v(x) = e
P
i θi∇iv(x) =

∞∑
k=0

(
∑
i θi∇i)

k

k!
v(x)

= v(x+ θ). (19)
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Up to first order S ≈ 1 +
∑
i θi∇i. Hence, for infinitesimal

translations, the error measure of equation (18) becomes

ES =
1
2

∑
i

〈v − (1 + θi∇i)v
θi

∣∣∣ v − (1 + θi∇i)v
θi

〉
= −1

2
〈v |∆ | v〉, (20)

assuming vanishing boundary terms. This is the classical
Laplacian smoothness term.

4.3 Approximate periodicity

In this paper we will in particular be interested in poten-
tials which are approximately periodic, as for a distorted
crystal surface. To measure the deviation from exact peri-
odicity for a local potential v(x) let us define the difference
operators (

∇Rθ v
)

(x) = v(x+ θ)− v(x). (21)(
∇Lθ v

)
(x) = v(x)− v(x− θ), (22)

For periodic boundary conditions (∇Lθ )T = −∇Rθ , where
(∇Lθ )T denotes the transpose of ∇Lθ . Hence, the operator

−∆θ = −∇Lθ∇Rθ = (∇Rθ )T∇Rθ (23)

defined in analogy to the negative Laplacian, is positive
(semi)definite, and a possible prior energy is an error term
which measures the deviation from exact periodicity for
given period θ,

ES =
1
2

∫
dx |v(x) − v(x+ θ)|2

=
1
2
〈∇Rθ v |∇Rθ v〉

= −1
2
〈v |∆θ | v〉. (24)

Discretizing v the operator∇Rθ for periodic boundary con-
ditions becomes, for example on a mesh with six points
and θ = 2, the matrix

∇Rθ =


−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
1 0 0 0 −1 0
0 1 0 0 0 −1

 , (25)

so that

−∆θ =


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

 . (26)

As every periodic function with v(x) = v(x + θ) is in
the null space of ∆θ typically another error term has to
be added to get a unique maximum of the posterior. For
example, combining a prior energy (24) with a Laplacian
smoothness term yields a Gaussian prior of the form (11)
with inverse covariance K0 = −λ(∆ + γ∆θ) and prior
energy

ES = −λ
2
〈v |∆+ γ∆θ | v〉, (27)

with weighting factors λ, γ. In case the period θ is not
known, it can be treated as hyperparameter as will be dis-
cussed in Section 4.5. Clearly, a nonzero reference poten-
tial v0 can be included in equation (27). In equation (24),
one may also sum over several periods

ES =
1
2

kmax∑
k=1

w(k)
∫

dx |v(x) − v(x+ kθ)|2, (28)

where w(k) is a weighting function, decreasing for larger k.
Prior energies as in (28) enforce approximate periodicity
over longer distances than a prior energy of the form (24).
The latter, on the other hand, is more robust than (28)
with respect to local deviations from periodicity, like a
locally varying frequency.

Instead of choosing an inverse covariance K0 with sym-
metric functions in its null space, approximate symmetries
can be implemented by using explicitly a symmetric ref-
erence function v0 = Sv0 for the Gaussian prior (11). For
approximate periodicity, this would mean to choose a pe-
riodic reference potential v0(x) = v0(x + θ) in the prior
energy ES = 1

2 〈v − v0 |K0 | v − v0〉 where K0 could be
for example the identity or a differential operator. Thus
a periodic reference potential favors a specific form for
the reconstructed potential, including a specific frequency
and phase. This is different for the covariance implemen-
tation (24) of approximate periodicity where only the fre-
quency is relevant and reference potentials can still be
chosen arbitrarily. They may, for example be nonperiodic
functions or functions with even higher symmetry like in
equation (27) where v0 ≡ 0 is invariant under all transla-
tions. Flexible reference potentials will be studied in Sec-
tion 4.5.

4.4 Potentials with discontinuities

As another possible a priori information we discuss the ex-
pectation of discontinuities in the potential, corresponding
for example to possible dislocations on a surface. Similarly,
in natural images, edges of objects typically produce dis-
continuities in grey level intensities.

Potentials v(x) which are smooth except for some dis-
continuities can either be approximated by using discon-
tinuous templates v0(x; θ) or by eliminating matrix ele-
ments of the inverse covariance which connect the two
sides of the discontinuity. For example, consider the dis-
crete version of a negative Laplacian with unit lattice
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spacing and periodic boundary conditions,

K0 = −∆ =


2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

 .

(29)

Decomposing the matrix (29) into square roots we write
K0 = WTW (see also Sect. 4.6) where a possible square
root is

W = ∇R1 =


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
1 0 0 0 0 −1

 .

(30)

Similarly, the derivative operator ∂/∂x represents a square
root of the negative Laplacian for periodic boundary con-
ditions. Two regions can now be disconnected by deleting
all lines of W which have matrix elements in both regions.
For instance, the first three points in the six-dimensional
space of equation (30) can be disconnected from the last
three points by setting W(3, ·) and W(6, ·) to zero,

W̃ =


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 0

 . (31)

Squaring of W̃ yields a positive semidefinite operator

K̃0 = W̃TW̃ =


1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


(32)

resulting in a smoothness prior which is ineffective be-
tween points from different regions. In contrast to using
discontinuous templates, the height of the jump at the
discontinuity has not to be given in advance when work-
ing with disconnected Laplacians (or other disconnected
inverse covariances). On the other hand training data are
then required for all separated regions to determine the
free constants which correspond to the zero modes of
the local Laplacians. The reconstruction of discontinuous
functions with non-Gaussian priors will be discussed in
Section 4.7.

4.5 Hyperparameters

In practice a single Gaussian prior process may not be
sufficient to represent the available a priori information.

Expecting for example an approximately periodic poten-
tial its approximate period θ may still be unknown. We
should therefore introduce θ as a parameter of the prior
and treat it as an additional random variable. In MAP,
that value for θ is selected which is most probable under
the observational data.

Parameters of the prior are known as hyperparameters
[23,35,50]. Like potentials v, hyperparameters θ are not
directly observable and represent hidden variables. In the
presence of hyperparameters a prior for v can be decom-
posed as follows

p(v) =
∫

dθ p(v|θ) p(θ), (33)

where p(θ) is known as hyperprior. The likelihood does
not depend on θ, the predictive probability (1), however,
contains then an integral over θ,

p(x|O,D) = (34)

1
p(xT |OT )

∫
dv dθ p(x|O, v) p(xT |OT , v) p(v|θ) p(θ).

Like the integral over v, the integral over θ can be calcu-
lated either by Monte Carlo methods or in MAP. We re-
mark that, when a θ–dependent prior is written in terms of
a corresponding prior energy p(v|θ) ∝ e−E(v|θ), the nor-
malization

∫
dv e−E(v|θ) is independent of v but does in

general depend on θ.
Hyperparameters θ can be single numbers or vectors.

They can describe continuous transformations, like trans-
lation, rotation or scaling of template functions and scal-
ing of inverse covariance operators. For real θ and differ-
entiable posterior, stationarity conditions can be found by
differentiating the posterior with respect to θ.

Instead of continuous transformations of templates or
inverse covariances one can consider a finite collection of
alternative reference potentials vi or alternative inverse co-
variances Ki. For example, a potential to be reconstructed
may be expected to be similar to one reference poten-
tial out of a small number of possible alternatives vi. The
“class” variables i are then nothing else but hyperparam-
eters θ with integer values.

Binary parameters allow to select from two reference
functions or two inverse covariances that one which fits
the data best. Indeed, writing

v0(θ) = (1− θ)v1 + θv2, (35)
K0(θ) = (1− θ)K1 + θK2, (36)

a binary θ ∈ {0, 1} implements hard switching between al-
ternative templates or inverse covariances, corresponding
to a conditional prior

p(v|θ) ∝ e−(1−θ)E1(v)−θE2(v) (37)

with

E1(v) =
1
2
〈v − v1 |K1 | v − v1〉, (38)

E2(v) =
1
2
〈v − v2 |K2 | v − v2〉. (39)
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Similarly, a real θ ∈ [0, 1] in (35) or (36) yields soft mixing.
In that case, however, the mixing of templates in (35) is
not equivalent to a mixing of prior energies as in (37)
because for real θ equations (35) and (36) lead to mixed
terms, like (1 − θ)θ〈v − v1 |K0 | v − v2〉/2 for K1 = K2.
When θ takes integer values the integral

∫
dθ becomes a

sum
∑
θ so that prior, posterior, and predictive probability

have the form of a finite mixture with components θ [51].
For a moderate number of components one may be able

to include all of the mixture components in the calcula-
tions. If the number of mixture components is too large
one must select some of the components, for example by
creating a random sample using Monte Carlo methods,
or by solving for the θ∗ with maximal posterior. In con-
trast to typical optimization problems for real variables,
the corresponding integer optimization problems are usu-
ally not very smooth with respect to θ (with smoothness
defined in terms of differences instead of derivatives), and
are therefore often much harder to solve.

There exists a variety of deterministic and stochas-
tic integer optimization algorithms, which may be com-
bined with ensemble methods like genetic algorithms
[52–56], and with homotopy methods like simulated an-
nealing [57–61]. Annealing methods are similar to (Markov
chain) Monte Carlo methods, which aim at sampling many
points from a specific distribution (i.e., for example at
fixed temperature). For Monte Carlo methods it is impor-
tant to have (nearly) independent samples and the correct
limiting distribution for the Markov chain. For anneal-
ing methods the aim is to find the correct minimum by
smoothly changing the temperature from a finite value to
zero. For the latter it is thus less important to model the
distribution for nonzero temperatures exactly, but it is
important to use an adequate cooling scheme for lowering
the temperature.

4.6 Hyperfields

The hyperparameters θ considered so far have been real
or integer numbers, or vectors with real or integer compo-
nents θi. In this section we will discuss priors parameter-
ized by functions, called hyperfields [23], resulting in a still
larger flexibility of the formalism. In a field theoretical lan-
guage, a hyperfield represents a new Euclidean scalar field
which interacts with the field v(x). In numerical calcula-
tions where functions have to be discretized hyperfields
stand for high dimensional hyperparameter vectors.

Using hyperfields one has to keep in mind that a gain
in flexibility at the same time tends to lower the influence
of the prior. For example, consider as hyperfield a com-
pletely adaptive reference potential θ(x) = v0(x) within
a Gaussian prior (11). Then, for any v(x) the prior en-
ergy vanishes for v0(x) = v(x). In the absence of addi-
tional hyperpriors p(θ) the corresponding MAP solution
for the hyperfield θ(x) = v0(x) is thus θ∗(x) = v(x) for
which the Gaussian prior (11) becomes uniform in v(x).
Hence the price to be paid for the additional flexibility
introduced by hyperfields are weaker priors and a large

number of additional degrees of freedom. This can con-
siderably complicate calculations and requires sufficiently
restrictive hyperpriors for the hyperfields.

Let us define local hyperfields θ(x) to be hyperfields de-
pending on the position variable x. (In general hyperfields
can be introduced which depend on other real variables
or on several position variables.) Local hyperfields can be
used, for example, to adapt templates or inverse covari-
ances locally. To this end, we express real symmetric, pos-
itive (semi)definite inverse covariances by square roots or
(real) filter operators W, so that

K0 = WTW. (40)

In components

K0(x, x′) =
∫

dx′′ WT (x, x′′)W(x′′, x′), (41)

and therefore

〈v − v0 |K0 | v − v0〉 =
∫

dxdx′ dx′′ [v(x) − v0(x)]

×WT (x, x′)W(x′, x′′)
× [v(x′′)− v0(x′′)]

=
∫

dx |ω(x)|2, (42)

where we define the filtered difference

ω(x) =
∫

dx′W(x, x′)[v(x′)− v0(x′)]. (43)

For instance, a square root (30) of the discrete negative
Laplacian (29) corresponds for v0 ≡ 0 to a filtered differ-
ence ω(x) = v(x+ 1)− v(x).

The exponent of a Gaussian prior for a local potential
v can thus be written as an integral over x,

p(v) ∝ e−E(v); E(v) =
1
2

∫
dx |ω(x)|2. (44)

In contrast to equations (35) and (36) the representa-
tion (44) is well suited for introducing local hyperfields.
For instance, an adaptive prior

p(v|θ) = e−E(v|θ), (45)

with a real local hyperfield θ(x) ∈ [0, 1] can be obtained
by mixing locally two alternative filtered differences

ω(x; θ) = [1− θ(x)]ω1(x) + θ(x)ω2(x), (46)

where the two ωi may differ in their filters and/or refer-
ence potentials. In that case the hyperfield θ(x) can locally
select the best mixture of the filtered differences ωi, i.e.,
that one which yields in (45) the largest probability or
smallest prior energy

E(v|θ) =
1
2

∫
dx|ω(x; θ)|2 + lnZV(θ) (47)

=
1
2

∫
dx
∣∣∣[1− θ(x)]ω1(x) + θ(x)ω2(x)

∣∣∣2+ lnZV(θ).
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Here the normalization factor

ZV(θ) =
∫
v∈V

dv e−
1
2

R
dx|ω(x;θ)|2, (48)

depends in general on θ if the filters of the ωi differ.
Clearly, allowing an unbounded −∞ ≤ θ(x) ≤ ∞ any
function ω(x; θ) can be written in the form of equa-
tion (46), provided ω1(x) 6= ω2(x) for all x. (We may
remark that a real hyperfield θ(x) is technically sim-
ilar to the metric introduced in [62,63] to achieve a
reparametrization invariant formulation of the posterior.
The metric, however, appears in the likelihood as well and
has a different transformation behavior.)

In contrast to soft mixing with real functions θ(x)
a binary local hyperfield θ(x) ∈ {0, 1} implements hard
switching between alternative filtered differences. Since in
the binary case θ2 = θ, (1− θ)2 = (1− θ), and θ(1− θ) =
0, equation (47) becomes (compare Eq. (37))

E(v|θ) =
1
2

∫
dx
(

[1− θ(x)]|ω1(x)|2

+θ(x)|ω2(x)|2
)

+ lnZV(θ), (49)

while for real θ(x) equation (47) includes a mixed term in
ω1ω2. It is sometimes helpful to transform an unrestricted
real hyperfield −∞ ≤ g(x) ≤ ∞ into a bounded real hy-
perfield θ(x) ∈ [0, 1] by

θ(x) = σ(g(x) − ϑ), (50)

with threshold ϑ and sigmoidal transformation

σ(x) =
1

1 + e−2νx
=

1
2

(tanh(νx) + 1). (51)

In the limit ν → ∞ the transformation σ(x) of (51) ap-
proaches the step function Θ(x) and (50) results in a bi-
nary θ(x) = Θ(g(x) − ϑ) ∈ {0, 1}.

Analogous to the global mixing or global switching in
equation (35) and equation (36), the alternative filtered
differences ωi(x) at position x in equation (46) can be con-
structed by local mixing or switching between template
functions v1(x′), v2(x′) or filters W1(x, x′), W2(x, x′) us-
ing a local hyperfield θ(x),

vx(x′; θ) = [1−θ(x)] v1(x′)+θ(x) v2(x′), (52)
W(x, x′; θ) = [1−θ(x)]W1(x, x′)+θ(x)W2(x, x′). (53)

It is important to note that the local templates or ref-
erence potentials vx(x′; θ) are functions of x′ and x. In-
deed, to obtain a filtered difference ω(x; θ) at position x,
a reference function vx is needed for all x′ for which the
corresponding W(x, x′) is nonzero, since

ω(x; θ) =
∫

dx′W(x, x′)[v(x′)− vx(x′; θ)]. (54)

In this way the whole template function vx(x′; θ), rather
than individual function values v0(x, θ), is adapted indi-
vidually for every local filtered difference. In particular,

the local reference potentials of equation (52) have to be
distinguished from one global, locally adapted reference
potential

v0(x′; θ) = [1− θ(x′)] v1(x′) + θ(x′) v2(x′), (55)

which at first glance seems to be the natural generaliza-
tion of equation (35) to local hyperfields. Only in Gaus-
sian prior terms with the identity I as covariance, local
template functions vx(x′, θ) are not required. In that case
vx(x′; θ) is only needed for x = x′ and we may directly
write vx(x′; θ) = ṽ0(x′; θ), skipping the variable x, and
obtain the prior energy

1
2

∫
dx |ω(x; θ)|2 =

1
2
〈v − ṽ0(θ) | v − ṽ0(θ)〉. (56)

We remark that one can also generalize equation (52),
which uses the same v1(x′), v2(x′) for all x, by working
with reference potentials v1,x(x′), v2,x(x′) which vary with
the position x at which the filtered difference ω(x) is re-
quired. This yields

vx(x′; θ) = [1− θ(x)] v1,x(x′) + θ(x) v2,x(x′). (57)

For binary θ(x) equation (53) corresponds to an inverse
covariance

K0(θ) =
∫

dx Kx(θ) =
∫

dxWx(θ)WT
x (θ)

=
∫

dx
(
[1− θ(x)]W1,xW

T
1,x + θ(x)W2,xW

T
2,x

)
(58)

with

Kx(θ) = Wx(θ)WT
x (θ) (59)

written as dyadic product of the vector Wx(θ) =
W(x, · ; θ) and with analogously defined Wi,x = Wi(x, ·).
For θ-dependent inverse covariances the normalization fac-
tors ZV(θ) become θ-dependent. They have to be included
when integrating over θ or solving for the optimal θ in
MAP.

In equations (52) and (53) it is straightforward to in-
troduce two binary hyperfields θ, θ′, one for the reference
potential vx and one for the filter W. This results in a
conditional prior

p(v|θ, θ′) ∝ e−
1
2

R
dx 〈v−vx(θ) |Kx(θ′) | v−vx(θ)〉

= e−
1
2

R
dx |ω(x;θ,θ′)|2 . (60)

Here we can write∫
dx |ω(x; θ, θ′)|2 = 〈v − v0(θ, θ′) |K0(θ′) | v − v0(θ, θ′)〉

+
∫

dx 〈vx(θ) |Kx(θ′) | vx(θ)〉

−〈v0(θ, θ′) |K0(θ′) | v0(θ, θ′)〉, (61)

with an effective template v0(θ, θ′) given by

v0(θ, θ′) = K0(θ′)−1

∫
dxKx(θ′) vx(θ), (62)
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and effective inverse covariance K0(θ′) =
∫

dxKx(θ′) as
in equation (58). Since the last two terms in equation (61)
are v-independent constants (only depending on θ, θ′) we
see that for fixed hyperfields this prior is minimized by v
= v0(θ, θ′). For given hyperparameters θ, θ′ we can write
p(v|θ, θ′) ∝ e−E(v|θ,θ′) with a prior energy of the form
E(v|θ, θ′) = 1

2 〈v − v0(θ, θ′) |K0(θ′) | v − v0(θ, θ′)〉.
As the product of Gaussians is again a Gaussian sev-

eral Gaussian prior factors can easily be combined. In this
way one can implement a nonlocal property like smooth-
ness and still avoid local template functions vx(x′, θ) by
combining a Gaussian prior with K0 = I as in (56) with a
Gaussian prior with nondiagonal covariance and zero (or
fixed) template,

E(v|θ) =
1
2
〈v − ṽ0(θ) | v − ṽ0(θ)〉 +

1
2
〈v |K | v〉. (63)

Combining both terms yields

E(v|θ) =
1
2

(
〈v − v0(θ) |K0 | v − v0(θ)〉

+ 〈ṽ0(θ) | I−K−1
0 | ṽ0(θ)〉

)
, (64)

with the second term being independent of v and with
effective template and effective inverse covariance

v0(θ) = K−1
0 ṽ0(θ), K0 = I + K. (65)

For differential operators K0 the effective v0(θ) is thus a
smoothed version of ṽ0(θ).

The extreme case would be to treat v0 and W itself
as unrestricted hyperfields. As already discussed, this just
eliminates the corresponding prior term. Hence, to restrict
the flexibility, typically a smoothness hyperprior may be
imposed to prevent highly oscillating functions θ(x). For
real θ(x), for example, a smoothness prior like a Lapla-
cian prior 〈θ | −∆ | θ〉/2 can be used in regions where it is
defined. (The space of functions for which a smoothness
prior with discontinuous templates is defined depends on
the locations of the discontinuities.) An example of a non–
Gaussian hyperprior is

p(θ) ∝ e−
τ
2

R
dxCθ(x), (66)

where τ is a constant and

Cθ(x) = σ

((
∂θ

∂x

)2

− ϑθ

)
, (67)

with a sigmoid σ(x) as in (51). For ν → ∞ the sigmoid
approaches a step function and Cθ(x) becomes zero at
locations where the square of the first derivative is smaller
than a certain threshold 0 ≤ ϑθ <∞, and one otherwise.
For discrete x one can analogously count the number of
jumps larger than a given threshold. One can then penalize
the number Nd(θ) of discontinuities where (∂θ/∂x)2 = ∞
and use

p(θ) ∝ e−
τ
2Nd(θ). (68)

In the case of a binary field this corresponds to count-
ing the number of times the field changes its value. The
expression Cθ of equation (67) can be generalized to

Cθ(x) = σ
(
|ωθ(x)|2 − ϑθ

)
, (69)

where, analogous to equation (43),

ωθ(x) =
∫

dx′Wθ(x, x′)[θ(x′)− tθ(x′)], (70)

with template tθ(x′) representing the expected form for
the hyperfield, and a filter operator Wθ defining a distance
measure for hyperfields. Parameters of the hyperprior like
τ in equation (66) or equation (68) can be treated as
higher level hyperparameters.

4.7 Non-Gaussian priors and auxiliary fields

As an alternative to introducing hyperfields θ(x) one can
work with priors which are explicitly non–Gaussian with
respect to v. This can be done by introducing auxiliary
fields B(x; v) whose function values are not considered
as independent variables but are directly defined as func-
tionals of v. (For the sake of simplicity we will for B(x; v)
also write B(x) or B(v), depending on the context.) Like
hyperfields, auxiliary fields can select locally the best
adapted filtered difference from a set of alternative ωi.

For instance, consider the auxiliary field (compare with
Eqs. (50) or (69))

B(x) = σ (u(x)− ϑ) , (71)

where

u(x) = |ω1(x)|2 − |ω2(x)|2, (72)

ϑ represents a threshold, σ(x) a sigmoidal function as
in (51), and the ωi are filtered differences defined in terms
of v according to equation (43). Again a binary field B(x)
is obtained by letting the sigmoid approach the step func-
tion. Because the ωi depend on v, it is clear from the defi-
nition (71) that the auxiliary field B(x) is no independent
hyperfield but has values being functionals of v. Notice
that B(x) is nonlocal with respect to v(x) if ωi(x) is non-
local; a value B(x) then depends on more than one v(x)-
value. For a negative Laplacian prior in one-dimension
equation (71) reads,

B(x) = σ

(∣∣∣∣∂(v − v1)
∂x

∣∣∣∣2 − ∣∣∣∣∂(v − v2)
∂x

∣∣∣∣2 − ϑ
)
. (73)

While auxiliary fields B(x) are directly determined by v,
hyperfields are indirectly coupled to v through the MAP
stationarity equations. Conversely, an auxiliary field B(x)
can be treated formally as independent hyperfield if a
Lagrange multiplier term λ [B(x) − σ (u(x)− ϑ)] is added
to the prior energy in the limit λ→∞.

Like hyperfields θ(x) auxiliary fields B(x) can be used
to adapt reference potentials v0 or filters W. However,
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a prior as in equation (11) is non-Gaussian with respect
to v if v0(B) and K0(B) depend on B and thus also on
v. Furthermore, analogous to hyperpriors p(θ), additional
prior terms p(B(v)) ∝ exp(−EB(v)) for v can be included,
formulated in terms of an auxiliary field B(x). As in equa-
tion (49) a binary B(x) can switch between two filtered
differences

|ω(x;B)|2 = [1−B(x)]|ω1(x)|2 +B(x)|ω2(x)|2, (74)

within a (non-Gaussian) prior for v

p(v) ∝ e−E(v)−EB(v), (75)

where the normalization factor Z =
∫

dv e−E(v)−EB(v) of
(75) is by definition independent of v. Hence it can be
skipped for MAP calculations also for non-Gaussian p(v).
In equation (75)

E(v) =
1
2

∫
dx
(
[1−B(x)]|ω1(x)|2 +B(x)|ω2(x)|2

)
,

(76)

according to equation (74), while EB(v) depends on v only
through B(v). For example, the number of switchings can
be restricted by taking

EB(v) =
τ

2
Nd(B), (77)

whereNd(B) counts the number of discontinuities ofB(x).
Other choices, for real B(x), are quadratic energies

EB(v) =
τ

2

∫
dx|ωB(x)|2 (78)

or non-quadratic energies of the form

EB(v) =
τ

2

∫
dxCB(x) (79)

where, similar to (69),

CB(x) = σ
(
|ωB(x)|2 − ϑB

)
. (80)

and

ωB(x) =
∫

dx′WB(x, x′)[B(x′)− tB(x′)], (81)

is a filtered difference of B with filter operator WB and
template tB.

Let us compare a non-Gaussian prior built of prior
energies (76) and (77) for a binary auxiliary field (71)

p(v) ∝ e−
1
2

R
dx ([1−B(x)]|ω1(x)|2+B(x)|ω2(x)|2)− τ2Nd(B),

(82)

with the similar-looking combination of Gaussian prior
(49) with hyperprior (68) for a binary hyperfield,

p(v, θ) = p(v|θ)p(θ)

∝ e−
1
2

R
dx [(1−θ(x))|ω1(x)|2+θ(x)|ω2(x)|2]− τ2Nd(θ)−lnZV (θ).

(83)
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Fig. 1. Example of a non-quadratic “cup”-function ψ(x) =
a(1.0− 1/(1 + (|x− x0|/b)γ)), with a= 5, b = 10, γ = 0.7, x0

= 0.

Equation (83) works with conditional probabilities p(v|θ),
hence the corresponding normalization factors are in gen-
eral θ-dependent and have to be included for MAP calcu-
lations. Typically, MAP solutions for B, Nd(B) and CB
being directly defined in terms of the corresponding MAP
solution for v are different from the MAP solutions for θ,
Nd(θ) and Cθ, respectively. However, if the filtered differ-
ences ωi in equation (83) differ only in their templates, the
normalization term can be skipped. Then assuming ϑ =
0, p(θ) ∝ 1, p(B) ∝ 1 the two equations are equivalent for
θ(x) = Θ

(
|ω1(x)|2 − |ω2(x)|2

)
. In the absence of hyper-

priors, it is indeed easily seen that this is a selfconsistent
solution for θ for every given v. In general, however, when
hyperpriors are included, another solution for θ may have
a larger posterior.

Hyperpriors p(θ) or additional auxiliary prior terms
p(B) can be useful to enforce specific global constraints
for θ(x) or B(x). In natural images, for example, discon-
tinuities are expected to form closed curves. Priors or hy-
perpriors, organizing discontinuities along lines or closed
curves, are thus important for image segmentation or im-
age restoration [10,64–67]. A similar method has been
used in the determination of piecewise smooth relaxation
time spectra from rheological data [68].

Another useful class of non-Gaussian priors generaliz-
ing (44) has the form [11,69,70]

p(v) ∝ e−
1
2

R
dxψ[ω(x)], (84)

where ψ is a non-quadratic function. This function ψ can
be fixed in advance for a given problem or adapted using
hyperparameters. Typical choices to allow discontinuities
are symmetric “cup” functions with minimum at zero and
flat tails for which one large step is cheaper than many
small ones (see Fig. 1).

Table 1 summarizes the basic variants of prior energies
discussed in the paper.

5 Stationarity equations

To reconstruct a local potential v in MAP we have to
maximize the posterior p(v|D) with respect to v. If the
functional derivative of the posterior with respect to v
exists, the reconstructed potential can be found by solving
the stationarity equation

δv ln p(v|D) = 0, (85)
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Table 1. Summary of basic prior energy variants discussed in
this paper.

Gaussian prior

E(v) = 1
2 〈v − v0 |K0 | v − v0〉 (11)

with hyperparameter θ

E(v|θ) = 1−θ
2 〈v − v1 |K1 | v − v1〉

+ θ
2
〈v − v2 |K2 | v − v2〉 (37)

with local hyperfield θ(x)

E(v|θ) = 1
2

R
dx

�
[1− θ(x)]|ω1(x)|2

+θ(x)|ω2(x)|2
�

+ lnZV(θ) (49)

E(v|θ) = 1
2 〈v − ṽ0(θ) | v − ṽ0(θ)〉+ 1

2 〈v |K | v〉 (63)

Non-Gaussian prior with auxiliary field B(x; v)

E(v) = 1
2

R
dx

�
[1−B(x)]|ω1(x)|2 +B(x)|ω2(x)|2

�
(76)

where we have chosen the logarithm for technical con-
venience, and δv denotes the functional derivative with
respect to v.

For observational data consisting of n independent po-
sition measurements the posterior (2) reads

p(v|D) ∝ p(v)
n∏
i=1

p(xi|x̂, v). (86)

To formulate the stationarity equation (85) we have to
calculate the functional derivatives of likelihood and prior.
For inverse quantum statistics [22] the likelihood for po-
sition measurements (8) on a canonical ensemble (6)
depends on the eigenfunctions and eigenvalues of the
v-dependent Hamiltonian H(v). We thus have to find the
functional derivatives of the eigenfunctions φα and eigen-
values Eα. Those can be obtained by taking the functional
derivative of the eigenvalue equation H|φα〉 = Eα|φα〉,
where we will assume the eigenfunctions to be orthonor-
malized. Choosing 〈φα | δv(x)φα〉 = 0 and utilizing

δv(x)H(x′, x′′) = δv(x)V (x′, x′′) = δ(x− x′)δ(x′ − x′′),
(87)

we find for nondegenerate eigenfunctions

δv(x)Eα = 〈φα | δv(x)H |φα〉 = |φα(x)|2, (88)

δv(x)φα(x′) =
∑
γ 6=α

1
Eα −Eγ

φγ(x′)φ∗γ(x)φα(x). (89)

It follows for the functional derivative of the likelihood

δv(x)p(xi|x̂, v) = 〈
(
δv(x)φ

∗(xi)
)
φ(xi) 〉

+〈φ∗(xi)δv(x)φ(xi) 〉

−β
(
〈 |φ(xi)|2|φ(x)|2 〉

−〈 |φ(xi)|2 〉〈 |φ(x)|2 〉
)
. (90)

Having obtained equation (90) for the likelihood we
now have to find the functional derivative of the prior.
For the Gaussian prior (11) one gets directly

δv ln p(v) = −K0(v − v0). (91)

If hyperparameters θ are included and treated in MAP
(i.e., not integrated out by Monte Carlo techniques), the
posterior has to be maximized simultaneously with respect
to v and θ. We have already mentioned that θ-dependent
inverse covariances lead to normalization factors which are
independent of v but depend on θ. Such factors have to
be included when maximizing with respect to θ.

As a non-Gaussian example consider a prior where two
filtered differences are mixed by an auxiliary field B(x)
and an additional prior factor p(B) is included, for ex-
ample to prevent fast oscillations of B(x). With B(x) =
σ(u(x) − ϑ), threshold ϑ, sigmoidal function σ(x) as in
equation (51), and u(x) = |ω1(x)|2 − |ω2(x)|2 this gives

p(v) ∝ e−
1
2

R
dx
∣∣[1−B(x)]ω1(x)+B(x)ω2(x)

∣∣2−EB . (92)

Analogous to equation (75), the term

EB =
∫

dxEB(x), (93)

represents an auxiliary prior energy formulated in terms
of the mixing function B(x). Like ω(x) the function value
EB(x) may depend on the whole function B and not nec-
essarily only on the function value B(x). Using ωi(x) =
〈x |Wi(v − vi)〉 we find

δv(x)ωi(x′) = Wi(x′, x), (94)

and thus

δv(x)u(x′) = 2
(
WT

1 (x, x′)ω1(x′)−WT
2 (x, x′)ω2(x′)

)
.

(95)

Furthermore, we obtain for the functional derivative of EB

δv(x)EB(x′) =
∫

dx′′
[
δv(x)B(x′′)

] [
δB(x′′)EB(x′)

]
,

(96)

where with equation (71)

δv(x)B(x′′) = σ′(u(x′′)− ϑ)δv(x)u(x′′), (97)

and σ′(u) = dσ(u)/du. For a prior energy as in (78) which
is quadratic in B(x)

EB(x) = |ωB(x)|2, (98)

ωB(x) defined in equation (81), the functional derivative
with respect to B(x) becomes

δB(x)EB(x′) = 2WT
B(x, x′)ωB(x′). (99)

For a non-Gaussian prior with energy (79) an additional
derivative of the sigmoid appears. Now all terms can be
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collected and inserted into the functional derivative of the
prior (92)

δv ln p(v) = −
∫

dx
(

[[1−B(x)]ω1(x) +B(x)ω2(x)]

×
(
[1−B(x)]δvω1(x) +B(x)δvω2(x)

+ δvB(x)[ω2(x) − ω1(x)]
)

+ δvEB(x)
)
.

(100)

The Bayesian approach to inverse quantum theory is
not restricted to position measurements, but allows to deal
with all kinds of observations for which the likelihood can
be calculated. To have better information about the depth
of a potential it is useful to include information on the
ground state energy of a system. For instance, including
a noisy measurement of the average energy

U = 〈E 〉 =
∑
α

pαEα, (101)

yields an additional factor in the posterior of the form

pU ∝ e−EU , EU =
µ

2
(U − κ)2. (102)

In the noise free limit µ→∞ this yields U → κ.
Calculating the functional derivative of U with respect

to a local potential

δv(x)U = 〈 δv(x)E 〉 − β〈E δv(x)E 〉+ β〈E 〉〈 δv(x)E 〉,
(103)

it is straightforward to obtain

δv(x)EU = µ (U−κ) 〈 |φ(x)|2 [1− β (E − U)] 〉. (104)

Stationarity equations are typically nonlinear and have
to be solved by iteration. A possible iteration scheme is

v(r+1) = v(r)+ ηA−1
[
δv ln p(v(r))

+
∑
i

δv ln p(xi|x̂, v(r))− δvE(r)
U

]
. (105)

Here η is a step width which can be optimized by a line
search algorithm and the positive definite operator A dis-
tinguishes different learning algorithms.

6 Numerical examples

As numerical application of BIQT and to test several
variants of implementing a priori information we will
study the reconstruction of an approximately periodic,
one-dimensional potential. Such a potential may represent
a one-dimensional surface where a periodic structure, e.g.
that of a regular crystal, is distorted by impurities, located
at unknown positions and of unknown form.

To test the quality of reconstruction algorithms, artifi-
cial data will be sampled from a model with known “true”

potential vtrue. Selecting a specific prior model and apply-
ing the corresponding Bayesian reconstruction algorithm
to the sampled data, we will be able to compare the recon-
structed potential with the original one. In particular, we
will take as true potential the following perturbed periodic
potential

vtrue(x) =

{
sin
(

2π
6 x
)

; 1 ≤ x ≤ 12, 25 ≤ x ≤ 36,
sin
(

2π
12x
)

; 13 ≤ x ≤ 24,
(106)

using for the numerical calculations a mesh of size 36.
Considering a system prepared as canonical ensemble, the
potential vtrue defines a corresponding canonical density
operator ρ as given in equation (6). Artificial data D
can then be sampled according to the likelihood model of
quantum mechanics (5). For the following examples, n =
200 data points representing position measurements have
been sampled using the transformation method [71]. In
all calculations we used periodic boundary conditions for
quantum mechanical wave functions while the potential v
has been set to zero at the boundaries.

We will now discuss the results of a Bayesian re-
construction under varying prior models. As first exam-
ple, consider a simple Gaussian prior (11) with negative
Laplacian inverse covariance K0 = −λ∆, zero reference
potential v0 ≡ 0, and an additional prior factor (102) rep-
resenting a noisy measurement of the average energy. The
reconstruction results are shown in Figure 2. In particular,
the figure on top compares the reconstructed likelihood
pBIQT(x|x̂, vBIQT) with the true likelihood ptrue(x|x̂, vtrue)
and with the empirical density, i.e., the relative frequen-
cies of the sampled data

pemp(x) =
1
n

n∑
i=1

δ(x− xi). (107)

Similarly, the lower figure compares the reconstructed po-
tential vBIQT with the true potential vtrue. Since infor-
mation on the average energy was available the depth of
the potential is well approximated at least at one of its
minima. This is sufficient to fulfill the noisy average en-
ergy condition. However, because only smoothness and no
periodicity information is implemented by the prior the
reconstructed potential is too flat. The effect is stronger
near the maxima than near the minima of the potential be-
cause near the maxima only few data points are available
and hence the reconstructed potential is there dominated
by the zero reference potential in the smoothness prior.

To include information on approximate periodicity we
have replaced in the next example the zero reference po-
tential v0 ≡ 0 by the strictly periodic reference potential

v0(x) = sin
(

2π
6
x

)
, (108)

shown as dashed line in the following figures of poten-
tials. A reconstruction with the periodic reference poten-
tial (108) but without average energy information, start-
ing the iteration with the reference potential as initial
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Fig. 2. Gaussian prior with Laplacian inverse covariance, zero
reference potential, and additional noisy energy measurement.
Top: Empirical density pemp (bars), true likelihood ptrue (thin),
reconstructed likelihood pBIQT (thick). Bottom: Reconstructed
potential vBIQT (thick) and true potential vtrue (thin). (With
200 data points, m = 0.25 for ~ = 1, β = 4. Gaussian prior (11)
with inverse covariance K0 = −λ∆, λ = 0.2, zero reference
potential v0 ≡ 0, and an additional energy penalty term of
the form (102) with µ = 1000 and κ = −0.330, equal to the
true average energy U(vtrue). The solution has been obtained
by iterating according to Eq. (105) with A = K0, starting
with initial guess v(0) ≡ 0. The optimal step width η has been
determined for each iteration by a line search algorithm.)

guess v(0) = v0, is shown in Figure 3. Due to missing av-
erage energy information the depth of the potential is not
well approximated. It is also clearly visible in Figure 3 that
the smoothness prior does not favor solutions which are
similar to the reference v0 itself but solutions which have
a derivative similar to that of v0. Figure 3 also displays
that the reconstruction of the potential does clearly iden-
tify the impurity. As the reference potential is not adapted
to the impurity region the reconstruction is there poorer
than in the regular region.

Furthermore, it is worth emphasizing that the recon-
structed likelihood fits the empirical density well, even
slightly better than the true likelihood does. This is due
to the flexibility of a nonparametric approach which al-
lows to fit the fluctuations of the empirical density caused
by the finite sample size. The effect is well known in em-
pirical learning and leads to so called “overfitting” if the
influence of the prior becomes to small. Since observa-
tional data influence the reconstruction only through the
likelihood, the reconstruction of potentials is in general a
more difficult task than the reconstruction of likelihoods.
This indicates the special importance of a priori informa-
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Fig. 3. Gaussian prior with periodic reference potential with-
out noisy energy measurement. Top: Empirical density pemp

(bars), true likelihood ptrue (thin), reconstructed likelihood
pBIQT (thick). Bottom: Reconstructed potential vBIQT (thick).
true potential vtrue (thin), and reference potential v0 (dashed)
of equation (108). (Number of data points and parameters m,
β, K0, and λ as for Fig. 2 but with µ = 0. The solution has
been obtained by iterating according to (105) as described for
Fig. 2 with initial guess v(0) = v0.)

tion when reconstructing potentials. Indeed, even if the
complete likelihood is given, the problem of determining
the potential can still be ill–defined in regions where the
likelihood is small [72].

A prior model with periodic reference potential can be
made more flexible by adapting amplitude, frequency, and
phase of the reference potential (108). For this purpose
one can introduce a hyperparameter vector θ = (θ1, θ2, θ3)
parameterizing amplitude, frequency, and phase and take
as reference potential

v0(x; θ) = θ1 sin
(

2π
θ2
x+ θ3

)
. (109)

The corresponding maximization of the posterior with re-
spect to θ is easy in that case and does not change the
results of Figure 3 where the hyperparameters are already
optimally adapted.

Including an additional noisy energy measure-
ment (102) Figure 4 shows that the depth of the potential
is indeed better approximated than in Figure 3. To avoid
local maxima of the posterior, the solution of Figure 3
has been used as initial guess and the factor µ multiply-
ing the average energy term has been slowly increased to
its final value. Figure 4 still represents only a local and no
global maximum of the posterior, as can be seen by start-
ing with a different initial guess v(0). In Figure 5 a better
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Fig. 4. Gaussian prior with periodic reference potential and
additional energy measurement, improving the approximation
of the minima. (Reference potential v0 given in (108), energy
penalty term as in (102) with µ = 1000 and κ = −0.330. All
other parameters as for Fig. 3. Iterated with the solution shown
in Fig. 3 as initial guess v(0).)

solution for the same parameters is presented where the
initial guess has been selected using a priori information
about the location of the impurity region.

Alternative to a Gaussian prior with periodic refer-
ence, approximate periodicity can be enforced by the
inverse covariance of a Gaussian prior. In this case the
prior favors periodicity but no special form of the po-
tential. The prior is thus less specific than a prior with
explicit periodic reference function. Corresponding BIQT
results for the inverse covariance (27) are shown in Fig-
ure 6. Indeed while the potential is well approximated in
regions where many observations have been collected, it
is not as well approximated in regions where no or only
few data are available. These are the regions where the
prior dominates the observational data. In particular, in
the case presented in Figure 6, the zero reference func-
tion v0 ≡ 0 of an additional Laplacian smoothness prior
implements a tendency to flat potentials.

If impurities are expected, a prior with one fixed peri-
odic reference potential for the whole region is no adequate
choice. Near impurities one would like to switch off the
standard periodic reference potential which in these re-
gions will be misleading. Because it is usually not known
in advance where a given reference should be used and
where not, those regions must be identified during learn-
ing. As first example we study a prior energy similar to
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Fig. 5. Gaussian prior with periodic reference potential and
additional energy measurement, with initial guess v(0) different
from that of Figure 4. (Reference potential v0 given in (108),
energy penalty term as in (102) All parameters as for Fig. 4.
Iterated with initial guess v(0)(x) = v0(x) for 0 < x ≤ 12, 25 ≤
x and v(0)(x) = 0 for 13 ≤ x ≤ 24.)
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Fig. 6. Approximate periodicity implemented by an inverse
covariance K0 = −λ(∆ + γ∆θ) as in equation (27). (With γ
= 1.0, λ = 0.2, a fixed θ = 6, energy penalty term with µ =
1000, and zero reference potential v0 ≡ 0. Initial guess v(0) =
v0 ≡ 0. All other parameters as for Fig. 3.)
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Fig. 7. Local switching between periodic and zero reference
potential. The black bars on top indicate regions where B(x)
= 1, i.e., regions where impurities have been identified. (Prior
of Eq. (110) with λ1 = 0.2, λ2 = 0.2, µ = 0, and reference po-
tential as in (108). The v-dependent function B(x) was slowly
changed from a sigmoid to a step function during iteration,
keeping the threshold ϑ = 0.15 fixed. All other parameters as
in Fig. 3. Initial guess v(0) as for Fig. 5).

equation (63),

E(v) =
λ1

2

∫
dx |v(x) − v0(x)|2[1−B(x)] − λ2

2
〈v |∆ | v〉,

(110)

now including a binary switching function defined as B(x)
= Θ

(
|v(x) − v0(x)|2 − ϑ

)
which allows to switch off a

given reference locally. (An average energy term EU =
µ
2 (U − κ)2 could easily be included.) In the prior en-
ergy (110) the reference v0 is only used if |v(x) − v0(x)|2
is smaller than the given threshold ϑ. Starting with a
smoothed version of equation (110) with a real mixing
function B(x) = σ

(
|v(x) − v0(x)|2 − ϑ

)
, the results of

Figure 7 have been obtained by changing during itera-
tion σ(x) slowly from a sigmoid to a step function. Using
a step function for B directly from the beginning leads to
nearly indistinguishable results. Compared to Figure 6 the
reconstruction in Figure 7 is improved mainly in the un-
perturbed region where the algorithm can now use the cor-
rect reference potential. An additional advantage is that
the final auxiliary field B(x) directly shows the identified
impurity regions. One sees in Figure 7 that the auxiliary
field B(x) is always switched off if the solution v(x) is
similar enough to the template v0(x).

The two v-dependent terms in equation (110) can be
combined (compare Eqs. (63) and (64)). Skipping a term
which only depends on v through B(x), one arrives at an-
other prior which also implements local switching. More

r r r r-�

r r r r-�

r r r r-�

Fig. 8. Generation of new trial configurations for simulated
annealing by selecting two points randomly and exchanging
the values zero and one of the binary function in between. This
mechanism has been used to optimize the binary functions c(x)
and θ(x).

general, choosing the prior energy (76) for switching be-
tween two filtered differences with two reference potentials
v1 and v2 leads to

E(v) =
λ1

2

∫
dx [1−B(x)]|ω1(x)|2

+
λ2

2

∫
dxB(x)|ω2(x)|2, (111)

where the switching is controlled by the binary function
B(x) = Θ

(
|ω1(x)|2 − |ω2(x)|2 − ϑ

)
defined in terms of the

filtered differences ωi(x) = (∂/∂x)[v(x) − vi(x)]. A prior
energy (111) with two different nonzero reference poten-
tials v1 and v2 is obtained, for example, when different
nonzero reference potentials are given for the unperturbed
and the perturbed region. The number of changes in the
switching function B(x) = Θ

(
|ω1(x)|2 − |ω2(x)|2 − ϑ

)
can

be controlled by adding a prior term p(B) penalizing the
number of times the function B(x) changes its value.
To avoid local minima for binary B(x), simulated an-
nealing techniques are useful. We have obtained an ini-
tial guess for v, and thus for B(x), by writing v(x) =
[1−c(x)]v1(x)+c(x)v2(x) and optimizing the binary func-
tion c(x) by simulated annealing with respect to the likeli-
hood and the additional prior p(B). In particular, starting
from c(x) = 0, new trial functions have been generated
by selecting two points x1, x2 randomly and exchanging
the function values zero and one in between (see Fig. 8).
A new trial function has been accepted or rejected using
the Metropolis rule p(accept) = min[1, exp(−βann∆Eann)]
with ∆Eann denoting the difference in the error between
actual function and new trial function. In the present
case we have Eann(v) =

∑
iE(xi|x̂, v) + EB(v) where

E(xi|x̂, v) = − ln p(xi|x̂, v) and p(B) ∝ exp(−EB). The
annealing temperature 1/βann decreases during optimiza-
tion.
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Fig. 9. Local switching between two nonzero reference po-
tentials. (Reference potentials v1, v2 given in (112) and (113).
Prior of Eq. (111), with λ1 = λ2 = 10, µ = 0. Step function
for B(x) with ϑ = 0. An additional prior p(B) on B has been
included with − ln p(B)/10 counting the number of disconti-
nuities of the function B(x). Other parameters as in Fig. 3.)

Figure 9 shows the reconstruction results using the fol-
lowing two reference potentials

v1(x) =
2
3

sin
(

2π
6
x

)
, (112)

v2(x) = sin2

(
2π
6
x

)
sign

[
sin
(

2π
6
x

)]
. (113)

Compared to Figure 7 the reconstruction is improved in
the perturbed region, where the algorithm can now rely
on a useful reference potential.

Finally, the switching function can be introduced as
local hyperfield. As an example for a prior with hyperfield,
Figure 10 shows the reconstruction with the prior energy

E(v, θ) =
λ1

2
〈v−v0(θ) | v−v0(θ)〉−λ2

2
〈v |∆ | v〉−ln p(θ),

(114)

where v0(x; θ) = v1(x)[1− θ(x)] + v2(x)θ(x) with the ref-
erence potentials of equation (112) and equation (113). A
hyperprior p(θ) has been used penalizing the number of
discontinuities of the hyperfield θ(x), analogous to p(B)
for Figure 9. The E(v|θ) part of the prior energy (114)
is of the form (49) with θ-independent covariances. Hence
the θ-independent normalization factor can be skipped.
An initial guess for the local hyperfield θ(x) has been ob-
tained by simulated annealing as described for Figure 9.
As in this case optimization is required only with respect
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Fig. 10. Prior with local hyperfield. (Prior of Eq. (114), with
λ1 = 10, λ2 = 1, ϑ = 0, µ = 0, including a hyperprior p(θ) with
EB/10 counting the number of discontinuities of the hyperfield
θ(x). Other parameters as in Fig. 3.)

to the θ-dependent parts of the posterior, optimizing θ(x)
for given v is faster than optimizing v through c(x) which
requires diagonalization of the Hamiltonian H for every
new trial function. However, as θ(x) is independent of v,
the hyperfield has to be updated during iteration which
has also been done by simulated annealing. As expected, a
reconstruction with the non-Gaussian prior corresponding
to the prior energy (111) is very similar to a reconstruction
using hyperfields as in equation (114).

7 Conclusion

A nonparametric Bayesian approach has been developed
and applied to the inverse problem of reconstructing po-
tentials of quantum systems from observational data.
When relying on observational data only, the problem is
typically ill-defined. It is therefore necessary to include a
priori information. Reconstructed potentials obtained by
Bayesian Inverse Quantum Theory (BIQT) depend sen-
sitively on the implemented a priori information. It is
thus essential to have flexible tools to implement prior
models which are adapted to the specific situation under
study. In particular, the use of hyperparameters, hyper-
fields, and non–Gaussian priors with auxiliary fields has
been discussed in detail. In contrast to “noninformative”
priors those techniques allow the construction of problem-
specific “informative” priors.
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In this paper we have focussed on the implementation
of approximate periodicity for potentials in inverse prob-
lems of quantum statistics. The presented prior models,
however, can be useful for many empirical learning prob-
lems, including for example regression or general density
estimation. Several variants of implementing a priori in-
formation on approximate periodicity have been tested
and compared numerically.
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